Login for faster access to the best deals. Click here if you don't have an account.

Insecticide - chemical substance

Jul 4th, 2022 at 23:28   Fashion   Baltimore   17 views Reference: 4354

Location: Baltimore

Price: Contact us

Insecticide - chemical substance

insecticide, any toxic substance that is used to kill insects. Such substances are used primarily to control pests that infest cultivated plants or to eliminate disease-carrying insects in specific areas.


Insecticides can be classified in any of several ways, on the basis of their chemistry, their toxicological action, or their mode of penetration. In the latter scheme, they are classified according to whether they take effect upon ingestion (stomach poisons), inhalation (fumigants), or upon penetration of the body covering (contact poisons). Most synthetic insecticides penetrate by all three of these pathways, however, and hence are better distinguished from each other by their basic chemistry. Besides the synthetics, some organic compounds occurring naturally in plants are useful insecticides, as are some inorganic compounds; some of these are permitted in organic farming applications. Most insecticides are sprayed or dusted onto plants and other surfaces traversed or fed upon by insects.


Modes of penetration

Stomach poisons are toxic only if ingested through the mouth and are most useful against those insects that have biting or chewing mouth parts, such as caterpillars, beetles, and grasshoppers. The chief stomach poisons are the arsenicals—e.g., Paris green (copper acetoarsenite), lead arsenate, and calcium arsenate; and the fluorine compounds, among them sodium fluoride and cryolite. They are applied as sprays or dusts onto the leaves and stems of plants eaten by the target insects. Stomach poisons have gradually been replaced by synthetic insecticides, which are less dangerous to humans and other mammals.


Contact poisons penetrate the skin of the pest and are used against those arthropods, such as aphids, that pierce the surface of a plant and suck out the juices. The contact insecticides can be divided into two main groups: naturally occurring compounds and synthetic organic ones. The naturally occurring contact insecticides include nicotine, developed from tobacco; pyrethrum, obtained from flowers of Chrysanthemum cinerariaefolium and Tanacetum coccineum; rotenone, from the roots of Derris species and related plants; and oils, from petroleum. Though these compounds were originally derived mainly from plant extracts, the toxic agents of some of them (e.g., pyrethrins) have been synthesized. Natural insecticides are usually short-lived on plants and cannot provide protection against prolonged invasions. Except for pyrethrum, they have largely been replaced by newer synthetic organic insecticides as technical products.


Fumigants are toxic compounds that enter the respiratory system of the insect through its spiracles, or breathing openings. They include such chemicals as hydrogen cyanide, naphthalene, nicotine, and methyl bromide and are used mainly for killing insect pests of stored products or for fumigating nursery stock.


Synthetic insecticides

The synthetic contact insecticides are now the primary agents of insect control. In general they penetrate insects readily and are toxic to a wide range of species. The main synthetic groups are the chlorinated hydrocarbons, organic phosphates (organophosphates), and carbamates.


Chlorinated hydrocarbons

The chlorinated hydrocarbons were developed beginning in the 1940s after the discovery (1939) of the insecticidal properties of DDT. Other examples of this series are BHC, lindane, Chlorobenzilate, methoxychlor, and the cyclodienes (which include aldrin, dieldrin, chlordane, heptachlor, and endrin). Some of these compounds are quite stable and have a long residual action; they are, therefore, particularly valuable where protection is required for long periods. Their toxic action is not fully understood, but they are known to disrupt the nervous system. A number of these insecticides have been banned for their deleterious effects on the environment.



The organophosphates are now the largest and most versatile class of insecticides. Two widely used compounds in this class are parathion and malathion; others are Diazinon, naled, methyl parathion, and dichlorvos. They are especially effective against sucking insects such as aphids and mites, which feed on plant juices. The chemicals’ absorption into the plant is achieved either by spraying the leaves or by applying solutions impregnated with the chemicals to the soil, so that intake occurs through the roots. The organophosphates usually have little residual action and are important, therefore, where residual tolerances limit the choice of insecticides as soil disinfectant. They are generally much more toxic than the chlorinated hydrocarbons. Organophosphates kill insects by inhibiting the enzyme cholinesterase, which is essential in the functioning of the nervous system.